If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-12x^2+240x=0
a = -12; b = 240; c = 0;
Δ = b2-4ac
Δ = 2402-4·(-12)·0
Δ = 57600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{57600}=240$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(240)-240}{2*-12}=\frac{-480}{-24} =+20 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(240)+240}{2*-12}=\frac{0}{-24} =0 $
| 2h^2=262 | | Y=-0.12x^2+2.4x | | 3x^2+9x-180=0 | | 5x+11=84 | | 4n+18=54 | | (x^2-1)(0.6x+1)=0.6x^2+x | | 7/3x+1/3x=4x+27/3+5/3x | | 4w^2+36w-63=0 | | 3x+6=x^2+6x+8 | | 4y-2+y+46=6y+50-3y | | 4x+6/3=5x-3 | | 4x/3+2=5x/2-3/2 | | 3x-12+7=5x+4x-17 | | 8+9n-7=9n+43-6n | | x²-8x=9 | | d+26/7=7 | | 8x+7(2-3x)=-6(2x+50 | | m/4+-18=-10 | | (1/2)x+(1/5)=13 | | 23-2q=11 | | r/6+43=51 | | x+5=5x-4 | | 8(d-84)=40 | | 1x=125 | | 9p-29=11+p | | 3x-5*0=9 | | 81y4=(9y)(9y4) | | 3x-5-1=9 | | 15=n/3+12 | | 17=2(m-15) | | 100/x=-4 | | 2(m-15)=143 |